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ABSTRACT
In this paper we consider the problem of answering queries using
views, which is important for data integration, query optimization,
and data warehouses. We consider its simplest form, conjunctive
queries and views, which already is NP-complete. Our context is
data integration, so we search for maximally-contained rewritings.
By looking at the problem from a graph perspective we are able
to gain a better insight and develop an algorithm which compactly
represents common patterns in the source descriptions, and (option-
ally) pushes some computation offline. This together with other op-
timizations result in an experimental performance about two orders
of magnitude faster than current state-of-the-art algorithms, rewrit-
ing queries using over 10000 views within seconds.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing; H.2.5
[Database Management]: Heterogeneous Databases; G.2.2 [Discrete
Mathematics]: Graph Theory—Hypergraphs

General Terms
Algorithms, Performance, Experimentation

1. INTRODUCTION
Given a conjunctive query Q, over a database schema D and a set

of view definitions V1, ..., Vn over the same schema, the problem
that we study is to find answers to Q using only V1, ..., Vn.

This is an important problem extensively studied in the con-
texts of query optimization, data integration and other areas [13,
15]. From the query optimization perspective, views are previ-
ous queries who have been already evaluated and their answers
have been materialized. In this context, systems rewrite subsequent
queries substituting a part of the original query with some of the
views, so as to come up with an equivalent optimized query.

In our context, of data integration, multiple heterogenous sources
(as web sites, databases, peer data etc.) are integrated under a
global query interface. These sources are usually presented as re-
lational schemas and the system offers a virtual mediated schema
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to the user for posing queries. Then, the system needs to rewrite
user queries as queries over the sources’ schemas only. More-
over, some sources might be incomplete; hence the system needs to
produce query rewritings that instead of equivalent are maximally-
contained.

Mappings between the sources’ schemas and the mediator schema
are usually given in the form of logical formulas, which we call
source descriptions. One approach for describing the sources, known
as global-as-view (GAV) [11], is to have the mediated relations ex-
pressed as views over the schema that the sources’ relations con-
stitute. An alternative approach is using local-as-view (LAV) map-
pings [16, 10], where each source relation is expressed as a view
over the mediator schema.

In this paper, we address the problem of rewriting a conjunctive
query using LAV descriptions, to a maximally-contained union of
conjunctive rewritings; this is fundamental to data integration and
related areas. To align the problem with the recent frontier of data
integration research we should mention current works that build
and extend on LAV rewriting algorithms (e.g., [18, 2, 14]) or use
their intuitions [20, 6]). There are also recent works that build on
LAV rewriting foundations (e.g., in composition of schema map-
pings [6, 4] or in uncertain data integration [3]) or assume the off-
the-self usage of a LAV rewriting algorithm (e.g., [6, 5]). It is
critical for all data integration systems to be able to support a large
number of sources, so our solution focuses on scalability to the
number of views.

Generally, the number of rewritings that a single input query can
reformulate to, can grow exponentially to the number of views, as
the problem (which is NP-complete [16]) involves checking con-
tainment mappings1 from subgoals of the query to candidate rewrit-
ings in the cross-product of the views. Previous algorithms (as
MiniCon [19] and MCDSAT [7]) have exploited the join conditions
of the variables within a query and the views, so as to prune the
number of unnecessary mappings to irrelevant views while search-
ing for rewritings.

We pursue this intuition further. The key idea behind our algo-
rithm (called Graph-based Query Rewriting or GQR) is to com-
pactly represent common subexpressions in the views; at the same
time we treat each subgoal atomically (as the bucket algorithm [17])
while taking into account (as MiniCon does) the way each of the
query variables interacts with the available view patterns, and the
way these view patterns interact with each other. Contrary to previ-
ous algorithms however, we don’t try to a priori map entire “chunks”
of the query to (each one of) the views; rather this mapping comes
out naturally as we incrementally combine (relevant to the query)
atomic view subgoals to larger ones. Consequently, the second

1Not to be confused with source descriptions which are mappings
from the sources’ schema to that of the mediator.



phase of our algorithm needs to combine much fewer and really
relevant view patterns, building a whole batch of rewritings right
away. Our specific contributions are the following:

• We present an approach which decomposes the query and the
views to simple atomic subgoals and depicts them as graphs;
we so abstract from the variable names by having only two
types of variable nodes: distinguished and existential.
• That makes it easier to identify the same graph patterns across

sources and compactly represent them. This can be done of-
fline, as a view preprocessing phase which is independent of
the user query and can be done at any time the sources be-
come available to the system, thereby speeding up system’s
online performance.
• Subsequently we devise a query reformulation phase where

query graph patterns are mapped (through much fewer con-
tainment mappings) to our compact representation of view
patterns. By bookkeeping some information on our variable
nodes (regarding their join conditions) we can combine the
different view subgraphs to larger ones, progressively cover-
ing larger parts of the query.
• During the above phase each graph “carries” a part of the

rewriting, so we incrementally build up the rewriting as we
combine graphs; we conclude with a maximally-contained
rewriting that uses only view relations, while at the same time
we try to minimize its size.
• Our compact form of representing the pieces of the views

allows us to also reject an entire batch of irrelevant views
(and candidate rewritings), by “failing” to map on a view pat-
tern. This also allows the algorithm to “fail-fast” as soon as a
query subgoal cannot map to any of the (few) view patterns.
• These characteristics make our algorithm perform close to

two orders of magnitude faster than the current state-of-the-
art algorithm, MCDSAT [7]. We exhibit our performance by
reformulating queries using up to 10000 views.

In Sect. 2 we present some preliminary notions about queries and
containment and introduce the necessary definitions for the prob-
lem. Our graph representation of queries and sources is presented
in Sect. 3 and our algorithm for scalable query rewriting in Sect. 4.
Our experimental results against MCDSAT are given in Sect. 5. In
Sect. 6 we compare against related work. We conclude in Sect. 7
where we also state our plans for future work.

2. THE QUERY REWRITING PROBLEM
This section will formally define our problem after going through

some necessary preliminary definitions. We use the well-known
notions of constants, variables, predicates, terms, and atoms of
first-order logic. We use safe conjunctive queries; these are rules
of the form Q(�x) ← P1(�y1), ..., Pn( �yn) where Q,P1, ..., Pn are
predicates of some finite arity and �x, �y1,..., �yn are tuples of vari-
ables. In the scope of the current paper (and similarly to [7]) we
have not considered constant symbols or built-in predicates. We
believe however, that our results can be extended to these cases (in
the spirit of [19]). We define the body of the query to be body(Q) =
{P1(�y1), ..., Pn( �yn)}. Any non-empty subset of body(Q) is called
a subgoal of Q. A singleton subgoal is an atomic subgoal. Q(�x) is
the head of the query.

Predicates appearing in the body stand for relations of a database
D, while the head represents the answer relation of the query over
D. The query being “safe” means that �x ⊆ ⋃n

i=1 �yi. All vari-
ables in the head are called head, distinguished, or returning vari-
ables, while the variables appearing only in the body (i.e., those in

⋃n
i=1 �yi \ �x) are called existential variables. We will call type of

a variable its property of being distinguished or existential. For all
sets of atoms S, vars(S) is the set of variables appearing in all the
atoms in S (e.g., vars(Q)2 is the set of all query variables). Q(D)
refers to the result of evaluating the query Q over the database D.

A view V is a named query. The result set of a view is called
the extension of the view. In the context of data integration a view
could be incomplete, in the sense that its extension could only be a
subset of the relation V (D). Users pose conjunctive queries over
D and the system needs to rewrite or reformulate these queries
into a union of conjunctive queries (UCQ) that only use the views’
head predicates so as to obtain all of the tuples in Q(D) that are
available in the sources. We will refer to this UCQ as the query
rewriting while an individual conjunctive query in a rewriting will
be called a conjunctive rewriting [7]. Query rewriting is closely
related to the problem of query containment [16].

We say that Q2 is contained in Q1, denoted by Q2 ⊆ Q1, iff for
all databases D, Q2(D) ⊆ Q1(D). If additionally there exists one
database D′ such that Q2(D

′)⊂Q1(D
′), we say that Q2 is strictly

contained in Q1 (denoted Q2 ⊂ Q1). If queries Q1, Q2 are both
contained in each other then they are equivalent (Q1

∼= Q2) and
produce the same answers for any database. For all Q1, Q2 over
the same schema, Q2 ⊆Q1 iff there is a containment mapping from
Q1 to Q2 [8]. Given two queries Q1, Q2, a containment mapping
from Q1 to Q2 is a homomorphism h:vars(Q1)→ vars(Q2) (h
is extended over atoms, sets of atoms, and queries in the obvious
manner), such that: (1) for all atoms A ∈ body(Q1), it holds that
h(A) ∈ body(Q2), and (2)h(head(Q1)) = head(Q2) (modulo the
names of Q1, Q2). Deciding query containment for two conjunc-
tive queries is an NP-complete problem [8].

Data integration systems operate with the open-world assump-
tion; they assume that extensions of views might miss some tuples
or that the exact information needed by the query cannot be pro-
vided by the views. In that case we would like to provide the max-
imal available subset of the needed information given the views we
have. Note that we demand complete rewritings in the sense that
they contain only view head predicates [15].

DEF. 1. Maximally-contained, complete rewriting: For all da-
tabases D, for all sets of views over D, V = {V1, ..., Vn}, for all
queries R, Q: R is a maximally-contained and complete rewriting
of Q using V , iff

• Q is a conjunctive query over D and R is a UCQ using only
head predicates of V , and
• for all (possibly incomplete) extensions of the views u1,...,un,

where ui ⊆ Vi(D) it is the case that R(u1, ..., un) ⊆ Q(D),
and
• there does not exist a query R′ such that R(u1, ..., un) ⊂

R′(u1, ..., un) and R′(u1, ..., un) ⊆ Q(D)

Our algorithm finds a maximally-contained and complete rewrit-
ing R, for the problem of answering a conjunctive query Q with a
set of conjunctive views. Taking notice at the containment mapping
definition we see that in order to check query containment between
R and Q, we need them to be over the same schema. This is done
by taking the expansions of the conjunctive rewritings in R. Given
r ∈ R, we define the expansion or r, exp(r), to be the conjunctive
query we obtain if we unfold the views, i.e., substitute the view
heads in the body of r with their descriptions (i.e, the bodies of
those view definitions). Note that, when the views get unfolded,

2When clear from the context we’ll use Q or V to refer to either
the datalog rule, the set of atoms of the rule, or just the head.



the existential variables in the view definitions are renamed so as to
get fresh variables.

For speeding up the actual query evaluation on the sources, query
rewriting algorithms pay attention to finding minimal conjunctive
rewritings inside R. More formally we can define a “minimization”
ordering ≤m as follows:

DEF. 2. Minimal conjunctive rewriting: For all conjunctive
queries R1, R2: R1 ≤m R2 iff

• R1
∼= R2, and

• there exists a set U ⊆ vars(body(R2)) and there exists an
isomorphism i : vars(body(R1)) → U (i is extended in
the obvious manner to atoms) such that (1) for all atoms
A ∈ body(R1) it holds that i(A) ∈ body(R2), and (2)
i(head(R1)) = head(R2).

The problem of minimizing a rewriting is NP-complete [16] and
therefore most algorithms produce a number of non-minimal con-
junctive rewritings in their solutions. An additional problem re-
lated to minimality is that of redundant rewritings, when more than
one equivalent conjunctions exist in the same UCQ rewriting. Our
algorithm produces fewer conjunctive rewritings than the current
state-of-the-art algorithm, but we also suffer from redundant and
non-minimal ones. A containment mapping from a query Q to a
rewriting R is also seen as the covering of Q by (the views in) R.
Similarly we can define:

DEF. 3. Covering: For all queries Q, for all views V , for all
subgoals gq ∈ body(Q), for all subgoals gv ∈ body(V ), for all
partial homomorphisms ϕ : vars(Q) → vars(V ), we say that a
view subgoal gv covers a subgoal gq of Q with ϕ iff:

• ϕ(gq) = gv, and
• for all x ∈ vars(gq) if x is distinguished then ϕ(x) ∈

vars(gv) is distinguished.

The intuition behind the second part of the definition is that
whenever a part of a query needs a value, you can not cover that
part with a view that does not explicitly provide this value. On oc-
casion, we might abuse the above definition to say that a greater
subgoal, or even V itself, covers qq with ϕ (since these coverings
involve trivial extensions of ϕ). For all variables x ∈ gq and y ∈ gv

we say that x maps on y (or y covers x) iff for a covering involving
ϕ, ϕ(x) = y.

To ground these definitions consider the following example. As-
sume that we have two sources, S1 and S2, that provide information
about road traffic and routes (identified by a unique id). S1 con-
tains ids of routes one should avoid; i.e., routes for which there is
at least one alternative route with less traffic. S2 contains points of
intersection between two routes. The contents of these sources are
modeled respectively by the two following LAV rules (or views):
S1(r1)→ AltRoutes(r1 ,r2), LessTraffic(r2, r1)

S2(r3, r4, p1)→ ConnectingRoutes(r3 , r4, p1)

Assume the user asks for all avoidable routes and all exit points
from these routes:

q(x, p)→ AltRoutes(x,y), LessTraffic(y,x), ConnectingRoutes(x,z,p)

The rewriting of q is: q′(x, p)← S1(x), S2(x, f, p)

In this example, the selection of relevant views to answer the user
query and the reformulation process was quite simple since there
were only two views. We just built a conjunctive query q′ using the
two views and tested that exp(q′)⊆ q, where exp(q′) is:
q′′(x, p) →AltRoutes(x,f1),LessTraffic(f1, x),ConnectingRoutes(x, f, p)

However, in general, there could be many more conjunctive rewrit-
ings in the rewriting than q′, and as mentioned checking contain-
ment is an expensive procedure. Notice that in order to construct a
conjunctive rewriting contained in the query, we select views that
have relevant predicates, i.e., that there is a mapping (covering)
from a query atom to the view atom. Coverings are essentially
components of the final containment mapping from the query to
the (expansion of the) combination of views that forms a conjunc-
tive rewriting. Paying close attention to how we construct coverings
and select views can help us avoid building conjunctive rewritings
which are not contained in the query. The second part of Def. 3
states that coverings should map distinguished query variables to
distinguished view ones, as the containment definition demands. In
our example, had one of S1 or S2 the first attribute (i.e., r1 or r3)
missing from their head, they would be useless. In effect, we want
the variable x of q to map onto a distinguished variable in a rele-
vant view. Additionally to their definition coverings should adhere
to one more constraint. Consider q1 which asks for avoidable routes
and all exit points from these routes to some alternative route with
less traffic:

q1(x, p)→ AltRoutes(x,y), LessTraffic(y,x), ConnectingRoutes(x,y,p)

Now the query demands that the second argument of Connect-
ingRoutes is joined with one of x’s alternative routes. This is im-
possible to answer, given S1 and S2, as S1 does not provide x’s
alternative routes (i.e., r2 in its definition). The property revealed
here is that whenever an existential variable y in the query maps on
an existential variable in a view, this view can be used for a rewrit-
ing only if it covers all predicates that mention y in the query. This
property is referred to as (clause C2 in) Property 1 in MiniCon[19].
This is also the basic idea of the MiniCon algorithm: trying to map
all query predicates of q1 to all possible views, it will notice that
the existential query variable y in the query maps on r2 in S1; since
r2 is existential it needs to go back to the query and check wether
all predicates mentioning y can be covered by S1. Here Connectin-
gRoutes(x,y,p) cannot. We notice that there is duplicate work being
done in this process. First, MiniCon does this procedure for every
query predicate, this means that if q1 had multiple occurrences of
AltRoutes it would try to use S1 multiple times and fail (although
as the authors of [19] say certain repeated predicates can be ruled
out of consideration). Second, MiniCon would try to do this for
every possible view, even for those that contain the same pattern
of S1, as S3 below which offers avoidable routes where also an
accident has recently occurred:
S3(r1) →AltRoutes(r1 ,r2), LessTraffic(r2, r1), RoutesWithAccidents(r1 )

S3 cannot be used for q1 as it violates MiniCon’s Property1,
again due to its second variable, r2, being existential and Connect-
ingRoutes not covered. Our idea is to avoid this redundant work by
compactly representing all occurrences of the same view pattern.
To this end we use a graph representation of queries and views pre-
sented subsequently.

3. QUERIES AND VIEWS AS GRAPHS
Our graph representation of conjunctive queries is inspired by

previous graph-based knowledge representation approaches (see con-
ceptual graphs in [9]). Predicates and their arguments correspond
to graph nodes. Predicate nodes are labeled with the name of the
predicate and they are connected through edges to their arguments.
Shared variables between atoms result in shared variable nodes, di-
rectly connected to predicate nodes.

We need to keep track of the arguments’ order inside an atom.
Therefore, we equip our edges with integer labels that stand for
the variables’ positions within the atom’s parentheses. In effect,



Figure 1: Query Q, and sources S1-S7 as a graphs.

an edge labeled with “1” will be attached to the node representing
the leftmost variable within an atom’s parentheses, e.t.c. Thus we
can discard variables’ names; from our perspective we only need
to remember a variable’s type (i.e., whether the ith variable of a
specific atom is distinguished or not within the query or the view).
This choice can be justified upon examination of Def. 3; the only
knowledge we require for deciding on a covering is the types of the
variables involved. Distinguished variable nodes are depicted with
a circle, while for existential ones we use the symbol ⊗. Using
these constructs the query:

Q(x1, x2)← P1(x1, y, z),P2(y, z),P3(y, x2)

corresponds to the graph seen in Fig. 1(a). Fig. 1(b) shows the
graph alterego of the following 7 LAV source descriptions:
S1(x, y, z, g, f)→ P1(x, y, z),P4(g, f)

S2(a, b)→ P4(b, a)

S3(c, d)→ P2(c, d)

S4(e, h)→ P3(e, h)

S5(i, k, j)→ P1(i, k, x),P4(j, x)

S6(l, m, n, o)→ P1(l, n, x),P4(m, x),P2(o, x)

S7(t, w, u)→ P1(t, u, x),P3(x, w)

3.1 Predicate Join Patterns
Our algorithm consists of mapping subgraphs of the query to

subgraphs of the sources, and to this end the smallest subgraphs
we consider represent one atom’s “pattern”: they consist of one
central predicate node and its (existential or distinguished) variable
nodes. These primitive graphs are called predicate join patterns
(or PJs) for the predicate they contain. Fig. 2(a) shows all predicate
joins that the query Q contains, (i.e., all the query PJs). We will
refer to greater subgoals than simple PJs as compound predicate
join patterns or CPJs (PJs are also CPJs, although atomic ones).
We can now restate Def. 3 using our graph terminology: A view
CPJ covers a query CPJ if there is a graph homomorphism h, from
the query graph to the view one, such that (1) h is the identity on
predicate nodes and labeled edges and (2) if a query variable node
u is distinguished then h(u) is also distinguished. For the query PJ
for P1 in Fig. 2(a), all PJs that can potentially cover it, appear in
Fig. 2(b)-(e). Notice that under this perspective:

• Given two specific PJs A an B, we can check whether A
covers B in linear time3.

3Since the edges of the two PJs are labeled, we can write them
down as strings, hash and compare them (modulo the type of vari-
able nodes).

Figure 2: Predicate Join Patterns.

• Given a specific query PJ A, there is an exponential number
of PJs that can cover it (in effect, their number is 2d with d
being the number of existential variables in A).

A critical feature that boosts our algorithm’s performance is that
the patterns of subgoals as graphs repeat themselves across differ-
ent source descriptions. Therefore we choose to compactly rep-
resent each such different view subgoal with the same CPJ. This
has a tremendous advantage (as also discussed in Sect. 6); map-
pings from a query PJ (or CPJ) to a view are computed just once
instead of every time this subgoal is met in a source description
(with the exception of repeated predicates which are addressed in
Sect. 4.2.4). Nevertheless, the “join conditions”, for a particular PJ
within each view, are different; more ”bookkeeping” is needed to
capture this. In Sect. 3.2 we describe a conceptual data structure
that takes care of all the “bookkeeping”. At this point, we should
notice that our graph constructs resemble some relevant and well
study concepts from the literature, namely hypergraphs and hyper-
edges [1] discussed in Sect. 6.

3.2 Information Boxes
Each variable node of a PJ holds within it information about

other PJs this variable (directly) connects to within a query or view.
To retain this information we use a conceptual data structure called
information box (or infobox). Each infobox is attached to a variable
v. Fig. 3 shows an example infobox for a variable node. A view
(or source) PJ represents a specific subgoal pattern found in multi-
ple sources. Therefore we want to document all the joins a variable
participates in, for every view. Hence, our infobox contains a list of
views that this PJ appears in; for each of these views, we maintain
a structure that we call sourcebox (also seen in Fig. 3), where we
record information about the other PJs, that v is connected to. In
effect we need to mark which PJ and on which edge of this PJ, v is
attached to in that particular view. We call this information a join
description of a variable within a sourcebox (inside an infobox, at-
tached to a PJ’s variable). For ease of representation we will denote
each join description of a variable v in a sourcebox, with the name
of the other predicate where we superscript the number of the edge
v is attached to, on this other predicate (Sect. 4.2.4 clarifies this in
the face of repeated predicates).

Fig. 4 shows for all predicates of Q, all the different PJs that
appear in sources S1 − S7 with their infoboxes. Note that the in-
foboxes belonging to a query PJ contain only one sourcebox (that
of the query), which in turn contains the join descriptions of the
variables in the query. We omit to present the infoboxes of Q as its
joins can be easily seen from Fig. 1(a).



Figure 3: Infobox for a variable node. The node is existential
and is attached on its predicate node on edge with label 3 (this
variable is the third argument of the corresponding atom). We
can find this specific PJ in three views, so there are three source-
boxes in the infobox. The two join descriptions in the sourcebox
S6 tell us that this variable, in view S6, joins with the second ar-
gument of P4 and the second argument of P2.

Figure 4: All existing source PJs for the predicates of the query
Q. For presentation purposes the infoboxes of the first variable
of P1 are omitted. The partial conjunctive rewritings (view
heads) each PJ maintains, are “descriptions” of the current
PJ and are candidate parts of the final conjunctive rewritings.
During our preprocessing phase, PJs for P4 (which also exists
in the sources) would also be constructed but are omitted from
being presented here (as they are dropped by our later phase).
Using these constructs we can compactly represent all the 8 oc-
currences of P1 P2 and P3 in the sources S1-S7, with the 6 PJs
presented here.

3.3 Partial conjunctive rewritings
Our compact representation of patterns allows us another major

improvement. Previous algorithms would first finish with a view-
query mapping discovery phase and then go on to gather up all
“relevant” view subgoals to form a (conjunctive) rewriting. Our
approach exploits the insight an algorithm gains during this phase
so as to start building the correct rewriting right away. At different
steps of our algorithm, each source CPJ covers a certain part of
the query and within this source CPJ (and only in source CPJs)
we maintain a list of conjunctions of atoms, which are candidate
parts of the final conjunctive rewritings that will cover this part
of the query. We call these partial conjunctive rewritings. These
conjunctions maintain information about which view variables out
of the views’ head are used and which of them are equated, i.e.,
joined (if at all). For example, the PJ in Fig. 4(a) contains the partial
rewriting S1(P1

1, P1
2, P1

3).

4. GRAPH-BASED QUERY REWRITING
Our solution is divided in two phases. Initially, we process all

view descriptions and construct all source PJs. In our second phase,
we start by matching each atomic query subgoal (i.e., PJ) to the
source PJs and we go on by combining the relevant source PJs to

form larger subgraphs (CPJs) that cover larger “underlying” query
subgoals. We continue combining source CPJS and during this
bottom-up combination, we also combine their partial rewritings
by taking their cross-product and either merge some of their atoms
or equate some of their variables. Note that we might also need to
“drop” some rewritings on the way, if they are no longer feasible
(see Sect. 4.2.3). We continue until we cover the entire query graph,
whereby we have incrementally built the maximally-contained and
complete rewriting.

4.1 Source Preprocessing
Given the set of view descriptions and considering them as graphs,

we break them down to atomic PJs, by splitting each graph on the
shared variable nodes. On top of the PJ generation we construct
infoboxes for every variable node in those PJs. Moreover, for every
PJ we generate a list of partial conjunctive rewritings, each contain-
ing the head of a different view this PJ can be found in.

Fig. 4 shows all the source PJs as constructed by the prepro-
cessing phase. For presentation purposes, in the partial conjunctive
rewritings, the view heads include only the arguments that we are
actually using at this phase. Similarly to the naming scheme of the
join descriptions, we use a positional scheme for uniquely naming
variables in a partial conjunctive rewriting. For instance, S7.P3

2

is the 2nd argument of PJ P3 in source S7 (Sect. 4.2.4 explains
how we disambiguate occurrences of the same predicate in a given
view). This naming policy is beneficial as it allows us to save valu-
able variable substitution time.

An advantage of our approach is that our preprocessing phase
does not need any information from the query, as it was designed to
involve only views. Typically, a data integration system has access
to all sources and view descriptions a priori (before any query). In
such a case, the views can be preprocessed off-line and the PJs can
be stored until a query appears. The details of this algorithm are
rather obvious and omitted, but it can be easily verified that this
preprocessing phase has a polynomial complexity to the number
and length of the views.

Nonetheless, one can create more sophisticated indices on the
sources. As seen in Fig. 2 there are 2d potential query PJs that a
source PJ can cover, with d being the number of distinguished vari-
able nodes in the source PJ. For our implementation we chose to
generate those indices; for every source PJ we construct all the (ex-
ponentially many) potential query PJs that the former could cover.
Consequently given a query PJ will are able to efficiently retrieve
the source PJs that cover it. The payoff for all indexing choices de-
pends on the actual data integration application (e.g., whether the
preprocessing is an off-line procedure or how large does d grow per
atom etc.). Nevertheless, any offline cost is amortized over the sys-
tem’s live usage. Moreover, the experiments of Sect. 5 show a good
performance of our algorithm even when taking the preprocessing
time into account.

4.2 Query Reformulation
Our main procedure, called GQR (Graph-based Query Rewrit-

ing) and shown in Algorithm 1, retrieves all the alternative source
PJs for each query PJ and stores them (as a set of CPJs) in S which
is a set of sets of CPJs initially empty (lines 1-6). As we go on (line
7 and below) we remove any two CPJ sets4 from S, combine all
their elements in pairs (as Algorithm 2 shows), construct a set con-
taining larger CPJs (which cover the union of the underlying query
PJs) and put it back in S. This procedure goes on until we cover the
entire query (combine all sets of CPJs) or until we fail to combine

4Our choice is arbitrary; nevertheless a heuristic order of combina-
tion of CPJ sets could be imposed for more efficiency.



Algorithm 1 GQR
Input: A query Q
Output: A set of rewritings for the query
1: for all predicate join patterns PJq in the query do
2: SetP ← RetrievePJSet(PJq)
3: if SetP empty then
4: FAIL
5: else
6: add SetP to S //S is the set of all CPJ sets
7: repeat
8: select and remove A,B ∈ S
9: C ← combineSets(A,B)

10: if C is empty then
11: FAIL
12: add C to S
13: until all elements in S are chosen
14: return rewritings in S

Algorithm 2 combineSets
Input: sets of CPJs A, B
Output: a set of CPJs combinations of A, B

for all pairs (a,b) ∈ A×B do
c← combineCPJs(a, b)
if c is not empty then

add c to C
return C

two sets of CPJs which means there is no combination of views to
cover the underlying query subgoals. If none of the pairs in Alg. 2
has a “legitimate” combination as explained subsequently, the sets
of CPJs fail to be combined (line 11 of Alg. 1). Fig. 5(c),(g) shows
the combination of PJs for P1 with PJs for P2, and in turn their
combination with the PJ for P3 (Fig. 5(h),(i)) to cover the whole
query.

4.2.1 Join preservation
While we combine graphs we concatenate the partial conjunc-

tive rewritings that they contain. When these rewritings contain the
same view, the newly formed rewriting either uses this view twice,
or only once; depending on whether the query joins are preserved
across the mapping to this source.

DEF. 4. Join preservation: For all PJA, PJB source PJs, for
all QA, QB query PJs where PJA covers QA and PJB covers
QB , for all views V that contain both PJA and PJB , we say that
V preserves the joins of QA and QB w.r.t PJA and PJB iff for all
join variables u between QA and QB:

• if a is the variable node u maps onto in PJA and b is the
variable node u maps onto in PJB , then a and b are of the
same type, and both a and b’s infoboxes contain a sourcebox
for V in which a has a join description for b, and b has a join
description for a, and
• there exists a u such that a and b are existential, or

(1) a and b are essentially the same variable of V (in the
same position) and (2) for all variables of PJA, a′, and of
PJB , b′, such that no join variables of the query map on a′

or b′, either a′ and b′ are don’t care variables (they are dis-
tinguished (in V) but no distinguished variable of the query
maps on them) or (without loss of generality): a′ covers a
distinguished query variable and b′ is a don’t care variable.

Intuitively when a view preserves the query joins with respect to
two PJs, our rewriting can use the view head only once (using both
the source PJs) to cover the two underlying query subgoals; this is

actually necessary when the PJs cover an existential join variable
with an existential view one (as in Property 1 of MiniCon [19]).
S6 for example, preserves the query join between P1

3,P2
2 with

respect to the PJs of Fig. 4(b) and (c). If on the other hand all
view variables that cover join variables are distinguished, Def. 4
states the conditions5 under which using the view head two times,
would be correct but not minimal according to Def. 2. For example
consider the following query and view:

q(x, y, z)→ p1(x,y,z), p2(y,z,w)

v(a, b, c, d)→ p1(a,b,c), p2(b,c,d)

A naive covering of p1 and p2 would use v two times, coming up
with the conjunctive rewriting:

r(x, y, z)→ v(x,y,z,f ′), v(f ′′,y,z,f ′′′)

If we enforce Def. 4 when combining the view patterns for p1(a,b,c)
and p2(b,c,d) we’ll notice that b and c do fall on the same positions
in v, and while the first pattern (p1) covers more query variables
(uses a to cover x) the second one has don’t cares (d in p2 is a
don’t care as rewritten as f ′′′). In this case we can merge the two
occurrences of v (using their most general unifier) and come up
with a more minimal rewriting: r(x, y, z)→ v(x,y,z,f ′′′).

This optimization is discussed in Sect. 4 of [16]. It is important
to notice the dual function of Def. 4. On one hand, given two source
PJs that cover an existential join with existential variables, a view
must preserve the join in order to be used. If, on the other hand, all
source variables that cover query joins are distinguished, the view
can preserve the join, and be used a minimal number of times.

Algorithm 3 retrievePJSet
Input: a predicate join pattern PJq in the query
Output: The set of source PJs that cover PJq.
1: for all PJs, source PJs that covers PJq do
2: OkToAdd← true
3: for all u variable nodes in PJq do
4: v ← variable of PJs that u maps on to
5: if v is existential then
6: if u is existential then
7: for all sourceboxes S in v’s infobox do
8: if joins in u � joins in S then
9: drop S from PJs

10: if some of PJs infoboxes became empty then
11: OkToAdd← false
12: break
13: if OkToAdd then
14: link PJs to PJq

15: add PJs to C
16: Prime members of C returned in the past
17: return C

4.2.2 Retrieving source PJs
After the source indexing phase, our first job when a query is

given to the system is to construct PJs and information boxes for
all its predicates. We then retrieve, with the use of Alg. 3, all the
relevant source PJs that cover each query PJ (i.e., the output of the
algorithm is a set of PJs). For an input query PJ, line 1 of Alg. 3
iterates over all (existing) view PJs that cover the input. Moreover,
as already discussed, if both a query variable and its mapped view
variable (u and v correspondingly) are existential, we won’t be able
to use this view PJ if the view cannot preserve the join patterns of
the query, under any circumstances. Therefore if view variable v
is existential, we have to inspect every sourcebox of v’s infobox
5These are relaxed constraints; we are investigating more cases un-
der which a rewriting could be minimized.



Figure 5: All source PJs that cover P1 are combined with all PJs that cover P2. As Alg. 2 suggests, we try all combinations of CPJs
that cover the query. The figure does not show the un-combinable pairs (as e.g., the PJ in (a) with the PJ in (f)). Note that combining
two nodes we eliminate the join descriptions we just satisfied. In the current example, PJ (d) is combined with both (c) and (g) which
alternatively cover the same part of the query. The union of the resulting rewritings of (h) and (i) is our solution.

(lines 7-9) and verify that all join descriptions of u are included in
there. If we find a sourcebox that breaks this requirement we drop
this sourcebox from every infobox of this view PJ and we delete
the partial conjunctive rewriting that mentions the corresponding
view as well (line 9). We do all that as if this source PJ pattern
never appeared in that view (for the specific subgoal of the query,
the specific view subgoal that this source PJ represents is useless).

For example, when the query PJ for P1, shown in Fig. 2(a), is
given to retrievePJSet the latter will consider the preconstructed
PJs shown in Fig. 4(a),(b); for the one in Fig. 4(b) line 9 will drop
the sourceboxes and the partial conjunctive rewritings related to S5

and S7 since only the infobox of S6 is describing the query joins.
This fail-fast behavior allows us to keep only the necessary view’s

references in a PJ (which, in the above example is S6). Moreover, if
none of the views can cover a query subgoal, the PJ itself is ignored,
leading to a huge time saving as (1) a dropped view PJ means that
a significant number of source pieces/partial rewritings are ignored
and (2) if we ignore all source PJs that could cover a specific query
PJ, the algorithm fails instantly. For example, consider the query
PJ for P3, in Fig. 2(a), which joins existentially with P1 and P2 on
its 1st argument. In order to use the view PJ of Fig. 4(e) (which
also has its first node existential) to cover it, we need to make sure
that the PJ of Fig. 4(e) includes at least one sourcebox (attached to
its 1st variable) which contains all the query join descriptions.

However the only sourcebox in that infobox is for S7 and it does
not describe the query join with P2. Therefore sourcebox S7 is
dropped, and as the view PJ remains empty, it is never returned by
Alg. 3. On the other hand if some PJs go through this procedure and

get returned, these are really relevant and have a high possibility of
generating rewritings. For our query of Fig. 1, retrievePJset will
be called three times (each time it will iterate over one column of
Fig. 4): for P1 it will return the PJs in Fig. 5(a) and (e), for P2 gives
Fig. 5(b) and (f) and for P3 it returns the PJ shown in Fig. 5(d).

Note that Alg. 3 also marks (line 14) which variables corre-
spond to returning variables of the query6. This is done by equat-
ing some of the partial conjunctive rewritings’ variables to distin-
guished query variables (as seen in Fig. 5(a), (d) and (e), we in-
clude some “equating” predicates in the rewriting). Also, notice
that since our example query Q does not contain P4 none of the
PJs for P4 is retrieved. Line 16 of the algorithm is explained in
Sect. 4.2.4. Notice that Alg. 3 returns a set of PJs which alterna-
tively cover the same query PJ. Furthermore the different sets that
Alg. 3 returns, cover different (and all) subgoals of the query. That
makes it easier to straightforwardly combine these sets to cover
larger parts of the query. We treat the element of each set as a CPJ
(initially they are atomic CPJs, i.e., PJs), and we pairwise combine
all the elements (CPJs) of two sets that cover two query subgoals;
we construct a resulting set containing larger combined CPJs. The
latter alternatively cover the larger underlying query subgoal. Next
section describes how we combine two CPJs to a greater one.

4.2.3 Combination of CPJs
Algorithm 4 takes two CPJs a and b and returns their combina-

tion CPJ. If the underlying query subgoals that these CPJs cover do

6In an effort to be user-friendly we are maintaining the original
names of the query variables.



not join with each other our algorithm just cross products the par-
tial conjunctive rewritings these CPJs contain and returns a greater
CPJ containing all PJs in both CPJs. If on the other hand underly-
ing joins exist, procedure lookupJoins in line 1 returns all pairs of
variables (va,vb), where va in a and vb in b, that cover the join vari-
ables. For example, for the PJs of Fig. 5(a) and (b), lookupJoins
will return the two pairs of variables (for the two joins in the query
between P1 and P2): (S6.P1

3,S6.P2
2) and (S6.P1

2,S6.P2
1). Next

we want to enforce Def. 4 and “merge” the view heads in the par-
tial conjunctive rewritings that preserve the join (lines 9 and 17) or
equate some of them so as to satisfy the join (line 19). By merging
two atoms of the same predicate, we keep the predicate (i.e., the
view head) only once and merge their arguments. Otherwise we
consider their conjunction and equate the variables that cover the
query join variable.

Algorithm 4 combineCPJs
Input: two CPJS a,b
Output: a CPJ, combination of a, b
1: for all join J in lookupJoins(a, b) do
2: va ← get from J variable in a
3: vb ← get from J variable in b
4: if type of va 
= type of vb then
5: return ∅ //∅ means un-combinable
6: else if type of va = ⊗ then
7: for all sourceboxes S in va’s infobox do
8: if S contains a join description for vb then
9: markForMerge(S,va, vb)

10: else
11: drop S from a and b
12: if va infobox = ∅ then
13: return ∅
14: else
15: for all pairs of sourceboxes (sa, sb) ∈ (infobox of va) ×

(infobox of vb) do
16: if sa preserves the joins of the query w.r.t. va and vb

then
17: markForMerge(sa, va, vb) //preserves implies

that sa = sb

18: else
19: markForEquate(sa, va, sb, vb)
20: crw ← crossproductRewritings(a, b)
21: enforceMergeAndEquations(crw)
22: c← mergeGraphsUpdateInfoboxes()
23: return c

Notice that we only can enforce joins on view variables of the
same type (line 4); we either join existential variables within the
same source or join/equate distinguished variables across sources.
If the view variables that cover the join are existential “merging”
is our only option; if va contains sourceboxes for different sources
as vb does, or if their common sourceboxes regard views that don’t
preserve the join, we drop these sourceboxes (line 11) and the cor-
responding partial conjunctive rewritings. If by this dropping we
“empty” a PJ of source references, this is no longer useful to us and
so a and b are un-combinable (line 13). This “pruning” is similar
to the one in Alg. 3 and can happen often.

On the other hand, if the view variables that cover the query join
are distinguished, we either merge the partial conjunctive rewrit-
ings on the corresponding view head (in case that the view satisfies
Def. 4) or we equate va and vb in the two view heads (line 19).
Finally, we consider the cross product of the remaining partial con-
junctive rewritings creating larger ones, and we iterate over them
to enforce all merging and equating we just noted down. For ex-
ample, in Fig. 5 when our algorithm examines the existential join
between the PJs shown in (a) and (b), it marks S6 for merging since
S6 preserves the join. At another iteration of line 1, regarding the
same PJs but for the distinguished join this time, we need to equate

Figure 6: Repeated Predicates. In (b) only the PJs for P1 are
shown; these “capture” all five occurrences of P1 in the sources
S1,S2 and S3 of (a).

two variables of S6 (namely, P1
2 with P2

1). At the end both these
decisions are enforced as seen in the partial conjunctive rewriting
of Fig. 5(c). As we go on, algorithm 1 combines all elements of S
and produces C, the set containing the CPJs seen in 5(h) and (i).
Their conjunctive rewritings are the conjunctive rewritings of the
solution and their union is the maximally-contained and complete
rewriting:

Q(x1, x2)← S6(x1, _, y, y),S4(y, x2)

Q(x1, x2)← S1(x1, y, z, _, _),S3(y, z),S4(y, x2)

4.2.4 Repeated Predicates
In general repeated predicates in the view descriptions should be

treated separately; we create multiple PJs per predicate per source
and name these PJs differently. We then can create and use in-
foboxes as described so far. For a query containing the correspond-
ing predicate the algorithm would try to use all these alternative PJs
and combine them with PJs that cover other parts of the query so
as to capture the multiplicity of the predicate in the sources. An
important notice is that we only need to maintain different PJs for
predicates within the same source, but not across sources; hence the
maximum number of different source PJs for the same predicate is
the maximum number a predicate repeats itself within any source.
Fig. 6(b) shows how we can use two different PJs to hold the infor-
mation needed for all the five occurrences of P1 in Fig. 6(a).

In the face of multiple occurrences of the same predicate in the
query, it is suitable to imagine all PJs discussed so far as classes
of PJs: we instantiate the set of PJs that cover a specific predicate
as many times as the predicate appears in the query. Each time
we instantiate the same PJ we “prime” the sources appearing in
the partial rewritings so as to know that we are calling the same
source but a second, different time (and as our argument names are
positional, “priming” the sources allows us to differentiate among
two instances of the same variable in the same source). Line 16
of algorithm 3 does exactly that. Having said the above, Fig. 7
shows all the PJs for the sources of Fig. 6 created for query Q of
Fig. 7. Rewritings for this query will come out of the 4 possible
combinations of these 4 instantiations of the two PJs (of Fig. 6).

4.2.5 GQR Correctness
Below we give a sketch proof that our algorithm is correct; for

soundness we show that any conjunctive rewriting in our output is
contained in the query, and for completeness that for any possible
conjunctive rewriting of the query, we always produce a conjunc-
tive rewriting which contains it.



Figure 7: Repeated predicates in the query (returning vari-
able names are shown in Q’s graph for convenience). For the
sources of Fig. 6(a), the algorithm “instantiates” the matching
PJs (Fig. 6(b)) for every occurrence of the same query predi-
cate.

THEOREM 1. Given a conjunctive query Q and conjunctive views
V1, ..., Vn, the GQR algorithm produces a UCQ that is a maximally-
contained and complete rewriting of Q using V1, ..., Vn.

PROOF. Soundness. Consider an output conjunctive rewriting r
of our algorithm. We need to show that exp(r) = r′ ⊆ Q. This
means that there is a containment mapping from Q to r′. Keep in
mind that the atoms in r′ however exist in different views (not in
the same as the containment mapping definition demands). It is not
difficult to see that our approach “constructs” the containment map-
ping through coverings; each covering is a mapping from a subpart
of the query to a part of r′. Considering multiple such coverings
will give us our containment mapping from Q to our combination
of views (that r contains).

Completeness. Consider a conjunctive rewriting p element of a
problem’s maximally-contained and complete rewriting. There is a
containment mapping from Q to exp(p). This means that depicted
as graphs, there is a graph homomorphism h1 from the query to
some of the PJs for the predicates that constitute exp(p). Break-
ing up the homomorphism per individual target PJ means that there
are coverings from parts of the query to these PJs (these coverings
do not get affected if we compactly represent these PJs, gather-
ing them up in patterns as in section 4.1). It is not hard to verify
that if such coverings exist our algorithm will consider them when
looking at different view PJs; hence it will produce a rewriting r
for the crossproduct of the views these PJs belong in, for which it
will hold that there exists a containment mapping (and a graph ho-
momorphism) h2 : vars(Q) → vars(exp(r)). Moreover for all
variables qv of Q which map on distinguished variables d in those
view PJs of r (i.e., h2(qv) = d), it holds also that h1 maps qv on
the same node d in the PJs of exp(p). Hence whenever r (which is

written over view head predicates) has a distinguished variable in
some view in its body, p has the same variable on the same position
on the same view (modulo renaming). Hence, there is a contain-
ment mapping from r to p, which means that p ⊆ r.

5. EXPERIMENTAL EVALUATION
For evaluating our approach we compared with the most efficient

(to the best of our knowledge) state-of-the-art algortihm, MCD-
SAT [7] (which outperformed MiniCon [19]). We show our perfor-
mance in two kinds of queries/views: star and chain queries. In all
cases GQR outperforms MCDSAT even by close to two orders of
magnitude. For producing our queries and views we used a random
query generator7.

5.1 Star queries
We generated 100 star queries and a dataset of 140 views for

each query. We created a space with 8 predicate names out of
which each query or view chooses randomly 5 to populate its body
and it can choose the same one up to 5 times (for instantiating re-
peated predicates). Each atom has 4 randomly generated variables
and each query and view have 4 distinguished variables. We mea-
sured the performance of each of the queries scaling from 0 to 140
views. We run our experiments on a cluster of 2GHz processors
each with 1Gb of memory; each processor was allocated all the
140 runs for one query, and we enforced 24 hours wall time for that
job to be finished. Fig. 8(a) shows the average query reformula-
tion time for 99 queries which met the time and memory bounds.
On this set of experiments we perform 32 times faster than MCD-
SAT. Fig. 8(a) also shows how the average number of conjunctive
rewritings grows with respect to the number of views.

5.2 Chain queries
For the chain queries we generated again 100 queries and a dataset

of 140 views for each query. Our generator could now choose
8 body predicates (on a chain), for any rule, out of a pool of 20
predicates of length 4. Up to 5 predicates in each rule can be the
same. Input queries have 10 distinguished variables. With this ex-
periment, we would like to avoid measuring exponential response
times simply because the size of the rewriting grows exponentially.
Hence, trying to create a “phase transition point”, we generated
the first 80 views for all our view sets containing 10 distinguished
variables and each additional view (up to 140) with only 3 distin-
guished variables. This causes the number of conjunctive rewrit-
ings to grow exponentially up to 80 views, but this rate becomes
much slower from there and after. This trend in the number of
rewritings can be seen in Fig. 8(b).

As seen in Fig. 8(b), GQR runs 75 times faster than MCDSAT
and it is much more scalable, as it “fails” very fast (7 chain queries
did not meet our experimental bounds, either for GQR or MCD-
SAT). This can be seen when there are no rewritings at all, as well
as after the point of 80 views; the time of reformulation clearly de-
pends more on the size of the output than that of the problem. As
also seen in Fig. 8(b), GQR produces fewer conjunctive rewritings
than MCDSAT. An example query where MCDSAT produced a re-
dundant rewriting was the following. Given the query and view:

q(x1, x2, x3) → p1(x0, x1, x2, x3), p2(x1)

v(y1, y2, y3, y4, y5, y6, y7) → p1(y2, y3, y9, y10), p1(y4, y5, y6, y7), p2(y1)

MCDSAT produces both rewritings below, while GQR produces
only the second (which contains the first):
7The generator was kindly provided to us by R. Pottinger, and it is
the same one that she used for the original experimental evaluation
of MiniCon.
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Figure 8: (a) Average time and size of rewritings for star queries. GQR time does not take into account the source preprocessing
time while gqr+p does. As we can see the preprocessing phase (for this small set of views) does not add much to our algorithm;
the query reformulation phase is dominating the time as the number of views increases. (b) Average time and size of rewritings for
chain queries. After the point of 80 views, while the problem size continues to grow linearly, the output (number of rewritings) grows
very slowly. (c) Average reformulation time for 10 chain queries. Preprocessing time is not included in the plot. (d) Average size of
rewriting for chain queries of (c). Queries q1,q2,q3 and q9 don’t produce any rewritings. (e) Ten chain queries on views constructed
from an increasing predicate space. The upper bunch of straight lines gives the total time for the queries, while the lower dotted part
gives only the reformulation time. (f) Number of rewritings for (e).

q(x1, x2, x3) → v(x1, f1, f2, x0, x1, x2, x3)

q(x1, x2, x3) → v(f0, f1, f2, x0, x1, x2, x3),
v(x1, f8, f9, f10, f11, f12, f13)

5.3 Chain queries using 10000 views
In Fig. 8(c) we expose the times for 10 chain queries with the

very same experimental setting of the previous subsection, using
10000 views. As previously the first 80 views for each query have
10 distinguished variables, and the rest only 3. However, as the
figure shows, our “transition phase point” did not work well for the
queries that had already produced some rewritings within the first
80 views (namely, q0,q4,q5,q6,q7 and q8). The number of conjunc-
tive rewritings for these queries grows exponentially to the number
of views. On the other hand 4 queries did not produce rewritings up
to 80 views; and they also did not produce any from that point and
on (as the number of distinguished variables for all views after 80
is too constraining to, e.g, cover an atom that has 4 distinguished
variables). Nevertheless this figure serves our point. The unfinished
queries have crashed on a number of views that caused too many
conjunctive rewritings, as Fig. 8(d) shows. In this setting, our al-
gorithm runs in less than a second for queries that don’t produce
rewritings for 10000 views, while it produces 250.000 conjunctive
rewritings for 10000 views in 44 seconds (for q4).

Lastly, in an effort to keep the number of conjunctive rewritings
low, we decided to set the predicate space (out of which we popu-
late our rules) to equal the number of views at each point. Fig. 8(e),
shows how ten chain queries performed with and without the pre-
processing times. As seen from the graph the exponential burden
of solving the problem lies on the preprocessing phase, while the
online reformulation time is less than second for all queries, even

the ones producing thousands of rewritings (Fig. 8(f) shows the
number of rewritings for these queries).

6. COMPARISON WITH RELATED WORK
Early approaches dealing with query rewriting involve algorithms

as the bucket [17] and the inverse rules [10]. A more efficient
approach was proposed in 2001, by the MiniCon [19] algorithm.
Similar to our notion of CPJs, MiniCon devises MCDs (MiniCon
Descriptions), which are coverings as defined in Def. 3 (they are
defined per distinct query and view subgoals) having the additional
property that they always consider as a whole the existentially chained
pieces of the query whenever one existential query variable is mapped
to an existential one on the view (Property 1 as discussed in Sect. 2).
Minimal MCDs are MCDs which don’t contain anything more than
these existential chained pieces. In the following, we briefly de-
scribe the two phases of the MiniCon algorithm and give our al-
gorithm’s advantages against each one of its steps. It is important
to notice that MCDSAT which exhibited a better performance than
MiniCon [7], is essentially the MiniCon algorithm casted as a sat-
isfiability problem, and comparing our algorithm against MiniCon,
reveals our advantages against the foundations of MCDSAT also.

6.1 MiniCon Phase One
Before considering a covering of an atomic query subgoal gq

with a view V , MiniCon uses a head homomorphism h:vars({head(V )})
→ vars({head(V )}) to possibly equate some variables in the head
of V (for all variables x, if x is existential h(x) = x and if it is dis-
tinguished, then h(x) is distinguished and h(h(x)) = h(x)). It
then can look for a homomorphism ϕ so as to cover gq with an
atomic subgoal h(gv) ∈ h(V ). Note in that the original MiniCon



algorithm the authors suggest a search over the entire space of all
least-restrictive head homomorphisms h, and mappings ϕ so that
ϕ(gq) = h(gv) ∈ h(V ) (STEP1).

Subsequently, for each gq,gv and pair of functions h,ϕ that come
out of STEP1, the algorithm produces a minimal MCD (STEP2).
Formally, an MCD M is a tuple < V, ϕ, h, Gq > where (a) h(V )
covers Gq ⊆ body(Q) (containing gq) with ϕ and (b) for all x,
if ϕ(x) is an existential variable, then all atomic subgoals gi ∈
body(Q) that mention x are in Gq. An MCD M is minimal if
(c) it covers8 gv together with the minimum additional subset of
body(Q) so as to satisfy (a) and (b). A minimal MCD intuitively
covers only one connected subgraph of the query graph which ad-
heres to property (b) above (clause C2 of Property 1 in [19]).

6.2 MiniCon Phase Two
In its second phase the MiniCon algorithm, needs to choose sets

of MCDs which cover mutually exclusive parts of the query, and
their union covers the entire query (STEP3). It then follows a
lightweight generation of a conjunctive rewriting for each MCD
combination (STEP4). For each conjunctive rewriting that it pro-
duces, the analogous of our Def. 4 is employed in order to “mini-
mize” some of the rewritings (STEP5).

6.3 MCDSAT
In MCDSAT, the authors cast MiniCon’s first phase (the MCDs

generation problem) into a propositional theory whose models con-
stitute the MCDs. This theory is then compiled into a normal form
called d-DNNF that implements model enumeration in polynomial
time in the size of the compiled theory. STEP1, and properties
(a), (b) and (c) of STEP2 result in clauses of that theory, which is
further extended with more optimization clauses. The result is an
efficient algorithm for generating MCDs. Nevertheless, as we dis-
cuss below we believe that we have a better encoding of the prob-
lem than MiniCon’s steps 1 and 2, that MCDSAT also employs.

For the second phase, that of MCD combination and rewriting
generation, MCDSAT considers either a traditional implementa-
tion of MiniCon’s second phase or yet another satisfiability ap-
proach: some additional clauses are devised in order to present an
extended logical theory whose models are in correspondence with
the rewritings. Note, that although the authors present an experi-
mental performance of the compilation times of these extended the-
ories, for our own evaluation we consider (and exhibit much better
performance on) the times to get the actual rewritings themselves.
Nonetheless, a contribution of these compiled extended theories is
that they serve as compact repositories of rewritings; once com-
piled one can get the rewritings in polynomial time to the size of
the compiled theory.

6.4 GQR vs MiniCon and MCDSAT
Our encoding of the problem exhibits several advantages against

steps STEP1-STEP5. Firstly, we don’t need to explicitly deal
with finding h in STEP1, since we abstract from variable names.
Returning variables are equated implicitly as we build up our CPJs.
Moreover, MiniCon iterates over every input subgoals gq and gv .
In combination with STEP2(b) this implies that some query sub-
goals will be considered more than once. In effect, while in STEP2
the query subgoals gi are included in an MCD for input gq (that
came out of STEP1), subsequent iterations will result them form-
ing the same MCD (among others) when they are themselves con-
sidered as the input subgoals of STEP19. GQR on the other hand
8Since MCDs are essentially descriptions of coverings, we’ll abuse
terminology to say that an MCD covers a subgoal.
9Although the algorithm suggests such a brute force approach, it

considers each query subgoal exactly once and thus avoids these
redundant mappings.

A major advantage of our encoding is that while STEP2 is con-
sidered for every distinct atomic view subgoal of every view, we
consider PJs; being compact representations of view patterns they
are dramatically fewer than the distinct view subgoals. Neverthe-
less this does not mean “more work” for a subsequent phase. On
the contrary, during our iteration of this less number of constructs
we avoid the heavy computation of STEP2. We essentially avoid
“tracking” each individual existentially chained piece in a view, for
every query subgoal we map onto a part of it (as STEP2(b) sug-
gests). Same piece patterns are consider just once for all sources,
at the time we combine their individual parts (PJs and CPJs).

This design also benefits our performance in the face of repeated
predicates in a view. Consider the view V1(x, g, f) → P1(x, y),
P2(y, z), P3(z, g), P3(z, f) and the query Q(a, b) → P1(a, y),
P2(y, z), P3(z, b). Here MiniCon will most probably (to the best
of our knowledge) create two MCDs for P3, each time recomputing
the mapping of P1(a, y), P2(y, z) to the view. On the other hand,
we will consider this mapping just once. Moreover as our previous
argument exposed, this join pattern of P1 and P2 will be at the same
time detected in every source it appears in (at the same step we also
rule out of future consideration all the non combinable sources that
contain these patterns).

We would like to point out that we do consider the whole set of
mappings from every atomic query subgoal to all the atomic view
subgoals per view, in a way very similar to STEP1. We do this
however in our preprocessing phase where we additionally com-
pute the PJ infoboxes. As a result we are left with both drastically
less constructs to deal with and in a more straightforward and less
costly manner than STEP2.

Moreover our algorithm exhibits additional advantages in that its
second phase (the CPJ combination) already encapsulates the en-
tire second phase of MiniCon and MCDSAT. And it does so even
more efficiently; the STEP3 of the related algorithms needs to
explicitly choose “mutually exclusive” MCDs in order to provide
non redundant rewritings; in our case all sets of CPJs (as seen in
Sect. 4) are mutually exclusive. Yet, we do need to combine all
their elements pairwise, however we can fail-fast in the case one
such pair is un-combinable as the reader can also see from Sect. 4.
The formulation of the actual rewritings (STEP4 for MiniCon) is
embodied in our second phase and is done incrementally (through
the partial rewritings) during the combination of the CPJs to larger
graphs. STEP5 is also smoothly incorporated with this incremen-
tal building of a rewriting through the implementation of Def. 4. In
conclusion, PJs (and CPJs) seem to be better constructs than MCDs
in encoding the problem. This is also why we believe our solution
performs better than the other algorithms.

6.5 Hypergraphs and Hypertree Decomposi-
tions

As already mentioned, our graphs and PJs resemble some rel-
evant and well study concepts from the literature, namely hyper-
graphs and hyperedges [1] accordingly. Nevertheless we find our
own notation more suitable for focusing on the type of the query’s
variables as well as making their join descriptions explicit. Since
hypergraphs were developed for representing single queries, it is
less convenient (although entirely symmetrical to our approach) to
attach infoboxes on them, or have hyperedges represent informa-
tion across multiple views. In [12], hypertree decompositions were

is indeed possible that the original MiniCon implementation did
prune out some redundant MCDs. The MCDSAT satisfiability per-
spective most probably also avoids this redundancy.



devised; these were hierarchical join patterns which combined hy-
peredges bottom-up into ever larger query fragments. Nevertheless
the focus of this representation is different; each vertex of these
constructs can represent a whole a set of atoms and/or variables
and each variable and atom induces a connected subtree. On the
other hand, looking at our own incremental build-up of the view
CPJs as a tree of combinations, we differentiate; we keep some
compact “hyperedges” per vertex and each parent vertex contains
all and exactly its children. Again it possible that our CPJ combina-
tion could be translated to a variation of hypertree decompositions
and we plan to further investigate this perspective in the future.

7. DISCUSSION AND FUTURE WORK
We presented GQR, a scalable query rewriting algorithm that

computes the rewritings in an incremental, bottom up fashion. Us-
ing a graph perspective of queries and views, it finds and indexes
common patterns in the views making rewriting more efficient.
Optionally, this view preprocessing/indexing can be done offline
thereby speeding up online performance even more. The bottom-up
rewriting process also has a fail-fast behavior. In our experiments,
GQR is about 2 orders of magnitude faster than the state of the art
and scales up to 10000 views.

GQR opens several areas of future work. First, the current al-
gorithm picks an arbitrary order for the bottom up combination of
CPJs. However, we plan to investage heuristic orderings that could
speed the process even further, by failing faster and/or computing
a smaller number of intermediate partial rewritings. Second, we
will like to explore the phase transitions in the space of rewritings.
Third, we plan to investigate the nature of minimal rewritings and
encode additional minimizations. Fourth, we plan to extend the
algorithm with constants and interpreted predicates, such as com-
parisons. Fifth, we will like to use the insights of our graph-based
representation to define a novel SAT encoding that may lead to an
even faster algortihm, given the significant optimization effort in-
vested in state-of-the-art SAT solvers. Finally, we want to extend
our algorithm to richer interschema axioms such as GLAV (source
to target rules that have conjunctive antecedents and consequents)
and to rewrite in the presence of constraints, particularly from more
expressive languages such as Description Logics.
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